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Abstract 
Building Performance Standards (BPS) are being 
adopted globally and in the United States of America, 
where 14 different states and jurisdictions have a policy 
in place, and many others are under development 
(Department of Energy (DOE) 2023). Accurate and eq-
uitable data sources are essential to make informed deci-
sions about focusing investment on upgrading buildings 
to meet jurisdictional goals. Multiple new tools have 
been developed related to Energy Equity and Environ-
mental Justice (EEEJ). The resulting datasets need to be 
integrated into large building portfolios for quick access 
and better scalability. Integrating EEEJ data in a user-
friendly format can help decision makers more quickly 
assess impacts and analyze the multitude of potentially 
significant metrics for which there is not yet consensus. 
Many BPS ordinances in the US and Canada rely primar-
ily on ENERGY STAR® Portfolio Manager® (ESPM) to 
capture building characteristics and energy and water 
consumption data. These datasets can then be imported 
into city-specific building tracking tools like the Stand-
ard Energy Efficiency Data Platform (SEED). Crucially, 
BPS decision makers require an efficient means of iden-
tifying buildings in priority communities to allocate re-
sources and funding effectively. This process must inte-
grate seamlessly with existing jurisdictional toolsets for 
optimal utility. This paper will demonstrate, for the case 
of Washington DC’s (the District) data, a workflow that 
provides actionable data for building upgrade investment 
prioritization in disadvantaged communities. 

Introduction 
Building Performance Standards (BPS) are used world-
wide as a policy mechanism to promote emissions and 
energy reductions in existing buildings. In the United 
States, BPSs originate at the federal, state, and local lev-
els and vary by jurisdiction in terms of the metric for 
compliance and the building types included. Jurisdic-
tions can adopt mandatory or voluntary policies and must 
decide whether to include commercial, multifamily, or 

single-family buildings in their ordinances. For example, 
in England, Wales, and Boulder, CO, the focus is on 
large residential buildings, while in New York City, 
France, and the State of Colorado, the focus—at least in-
itially—is on medium and large commercial buildings. 
These policies often begin by selecting a baseline year 
for buildings to refer to when setting their annual (or cy-
cle-specific) reduction targets. In some cases, targets be-
come more stringent over time, and jurisdictions often 
start with one specific building type and gradually intro-
duce other building types or lower the floor area thresh-
olds as regulations evolve (Nadel and Hinge 2023). 
As BPS programs continue to be adopted, there is a need 
for robust datasets in adjacent fields to make more in-
formed decisions. This includes integrating data from ac-
tive research areas such as Energy Equity and Environ-
mental Justice (EEEJ). Various methodologies and im-
pact indicators are being developed by groups such as the 
US Department of Energy (DOE), the US White House 
Council on Environmental Quality (CEQ), and the Envi-
ronmental Protection Agency (Department of Energy 
(DOE) 2023b). The White House CEQ’s Justice 40 (Jus-
tice40) initiative provides a framework for federal agen-
cies to work with state and local communities to ensure 
that 40% of federal investments are directed to disadvan-
taged communities (Young, Mallory, and McCarthy 
2021). Currently, Justice40 does not directly address 
how state and local BPS programs should meet the re-
quirement. Although jurisdictions are not required to use 
the Justice40 goals or metrics, leveraging the existing 
EEEJ research and disadvantaged community (DAC) 
status may reduce internal administrative and financial 
burdens in federal funding applications to support a ju-
risdiction’s local policy initiatives. The Climate and 
Economic Justice Screening Tool (CEJST) leverages the 
Justice40 definition of a disadvantaged community (e.g., 
low income, high unemployment, linguistic isolation, 
etc.), which is a community that can benefit from new 
and existing federal investments in these categories.  
During the policymaking process, jurisdictions must de-
cide which buildings to include in a BPS. Jurisdictions 



   
 

worldwide have different mixes of industrial, commer-
cial, and multifamily building types in their ordinances. 
A jurisdiction may choose to include certain building 
types if it can conduct impact studies, but not all juris-
dictions have this capacity. In this study, a building type 
of interest is multifamily properties, which often have 
unique barriers to compliance, such as a lack of upfront 
capital, time, or technical capacity (Nedwick et al. 2020). 
The District has become a blueprint for implementing 
equitable BPS policies in the multifamily affordable 
housing sector in the United States. The District’s com-
mitment to equity in this sector depends not only on local 
energy and emissions reduction goals but also on a com-
mitment to meaningful outcomes such as lower energy 
bills and improved environmental quality in disadvan-
taged communities. For an equitable BPS, it is essential 
to consider multifamily buildings, as improving them 
can have a direct impact on families that have previously 
been ignored. Reducing energy bills and improving in-
door environmental quality, for example, can provide 
tangible solutions to historic inequities in the built envi-
ronment. This study focuses on multifamily housing to 
show what free tools and workflows jurisdictions can use 
to address perceived barriers to BPS compliance in mul-
tifamily buildings, which often have a significant burden 
to meeting investment targets but have the potential to 
improve the quality of life for families dramatically. 
Linking BPS-built environment data and EEEJ data is 
necessary to provide the BPS program administrator 
with more actionable information when tracking their 
building portfolio over multiple years. The process of 
tracking 100’s to 1,000’s of buildings over a 5- or 6-year 
BPS program is challenging, and many smaller jurisdic-
tions leverage spreadsheet programs, but custom solu-
tions have been developed for more complex portfolios. 
This paper discusses how the Standard Energy Effi-
ciency Data Platform (SEED) and SEED-based applica-
tions have been extended to not only track BPS programs 
but also integrate and optimize investments based on 
EEEJ data. A new API-based tool called the Building Ef-
ficiency Targeting Tool for Energy Retrofits (BETTER) 
(Szum et al. 2018; LBNL 2023; Li et al. 2019) was used 
to calculate potential energy savings and investments 
providing a modern and user-friendly approach to John-
son Control’s LEAN model (Donnelly, Kummer, and 
Drees 2013) and ASHRAE’s Inverse Model Toolkit 
(Kelly Kissock et al. 2003). 

Background 
Benchmarking and Building Performance Standards 
have been a worthwhile incentive for jurisdictions and 
building owners to track energy, water, and emissions by 
building. In the US, commercial and residential build-
ings account for 40% of energy consumption, 35% of 

emissions are caused by buildings, and 70% of electricity 
alone is attributed to buildings (US Energy Information 
Administration 2021a; 2021b). The need to achieve cli-
mate goals is critical for many jurisdictions; benchmark-
ing and BPS programs enable jurisdictions to track and 
assess progress toward their goals. However, tracking 
buildings is challenging because the data are confusing. 
For example, there may be more than one building ad-
dress in a building, or the data reported by the owner may 
be incorrect. One of the mechanisms to improve data 
quality is for jurisdictions to provide public access to 
non-proprietary information. In general, access to build-
ing data has increased significantly over the past decade, 
and many jurisdictions are making public data available 
for evaluation. 
Jurisdictions that track buildings (not just tax lots) are 
becoming more commonplace due to new policies and 
public interest. In the context of BPS, buildings that do 
not meet the requirements may need to be retrofitted to 
meet compliance. The jurisdictions responsible for BPS 
should have access to the best data to make informed de-
cisions, such as selecting building types, floor area 
thresholds, and exemption criteria. Another decision 
point is prioritizing investments in building retrofits for 
disadvantaged communities. This paper describes in 
more detail how the building data are tracked in SEED, 
how the disadvantaged communities and energy burden 
indicators are described, and how BETTER is used to 
provide upgrade recommendations.  

The Standard Energy Efficiency Data Platform 
SEED is an open-source, free, web-based application 
that is deployable on local or cloud-based resources 
(Taylor et al. 2012). The US Department of Energy 
(DOE) launched the SEED project in 2012 to reduce a 
jurisdiction’s administrative burdens, such as costs, staff, 
and user time to manage benchmarking and BPS poli-
cies. Many cities have too few resources and staff. It is 
costly to assign new tasks to existing staff to track bench-
marking and building performance standards. SEED can 
be hosted by the jurisdiction, or there are several SEED-
based projects that cities can purchase that are less ex-
pensive than building a custom solution or using a spe-
cialized spreadsheet to track issues.  
At SEED’s core is a tabular view of the buildings (see 
Figure 1), which the jurisdiction tracks or evaluates. In 
SEED, data are imported from disparate data sources 
such as ENERGY STAR® Portfolio Manager® (ESPM), 
spreadsheets, or GeoJSON files. Each import requires 
the user to map the fields of the incoming file to the ca-
nonical fields already present in SEED. New fields are 
added dynamically as required. The result is a cohesive 
and robust list of buildings over multiple years (cycles), 
linked parcels, utility meter data, lists of scenarios and 



   
 

energy efficiency measures, and sensor data. Each data 
import matches records based on a set of “matching 
fields” and merges data together, providing a single rec-
ord per building identifier. Data quality checks ensure 
the data are within the required bounds, and labels can 
be automatically applied to problematic buildings. Fur-
thermore, SEED can directly escalate building data qual-
ity issues to Salesforce to be tracked or emailed to build-
ing owners. 

 
Figure 1 SEED Platform inventory page with buildings 

SEED provides a user interface that allows profiles of 
user-displayed volumes as well as filter groups to view 
buildings that match specific criteria quickly. SEED has 
analysis pipelines to enrich data from external analyses 
or services (e.g., BETTER, GHG calculations, or the 
newly added EEEJ functionality) (Long et al. 2020). 

Disadvantaged Community and Energy Burden 
This work is consistent with the Justice40 Initiative, 
which uses the White House’s definition of a disadvan-
taged community. The Justice40 Initiative mandates that 
40% of the benefits of federal programs go to disadvan-
taged communities (Presidential Executive Order 14008 
of January 27 2021). By using the same definition, juris-
dictions using SEED can identify eligible buildings for 
Justice40 funding. As described in Executive Order 
14008 on Tackling the Climate Crisis at Home and 
Abroad (Presidential Executive Order 14008 of January 
27 2021), disadvantaged communities have historically 
been marginalized and overburdened by pollution. There 
has been underinvestment in housing, transportation, 
water and wastewater infrastructure, and healthcare. The 
White House has developed a Climate and Energy Jus-
tice Screening Tool (Council on Environmental Quality 
2022) that defines a methodology for categorizing a 
community as disadvantaged using several indicators of 
burden as well as socioeconomic factors. The CEJST 
tool was developed to create a uniform definition for dis-
advantaged communities that can be used by all federal 
agencies implementing programs in support of the Jus-
tice40 Initiative (Council on Environmental Quality 
(CEQ) 2022). 

The indicators of burden used in the CEJST tool are de-
fined using data from public sources and are organized 
into eight categories: 1) climate change, 2) energy, 3) 
health, 4) housing, 5) legacy pollution, 6) transportation, 
7) water and wastewater, and 8) workforce development. 
Each category is assigned to a 2010 census tract com-
prising one socioeconomic factor and one or more re-
lated indicators. The socioeconomic factor is the condi-
tion of being in a census tract at or above the 65th per-
centile for low income for most categories of burden. 
Low income is defined as being at or below 200% of the 
federal poverty level. The notable exception is the work-
force development category, which has a socioeconomic 
factor defined as having more than 10% of people over 
25 with less than a high school diploma. 
The energy burden category is defined as being in a cen-
sus tract that is a) either at or above the 90th percentile 
for energy cost or at or above the 90th percentile for 
PM2.5 in the air, and b) at or above the 65th percentile 
for low-income (Council on Environmental Quality 
2022). 
A community is categorized as a DAC by CEJST if one 
of the following conditions is true:  
• The community is in a census tract that a) meets the 

threshold for burden in at least one of the defined 
categories of burden and b) meets the threshold for 
the associated socioeconomic indicator. 

• The community is in a census tract surrounded by 
disadvantaged census tracts and is at or above the 
50th percentile for low income. 

• The community is in a census tract that is located on 
Federally Recognized tribal land. 

Washington DC’s Building Energy Performance Pro-
gram: Multifamily 
If successful, BPS policies can move the United States 
closer to meeting greenhouse gas emission reduction tar-
gets while improving the health of building occupants. 
However, the equitable distribution of economic, social, 
and environmental benefits of BPS depends mainly on 
the design of these policies (Nedwick et al. 2020). To 
design building performance standards equitably, poli-
cymakers must investigate various subgroups of their 
building stock, engage stakeholders, and conduct analy-
sis to inform the policymaking process.  
One critical decision for BPS policymakers to consider 
is whether to include multifamily buildings in their ordi-
nance. Currently, three states and 11 cities in the US have 
adopted BPS policies (ASHRAE 2023). The District’s 
Building Energy Performance Standards (BEPS) was 
one of the first programs to adopt an ordinance in the US 
and included multifamily in the policy. The District in-



   
 

cluded the multifamily sector due to the localized re-
search they conducted to understand the multifamily 
building stock (DOEE 2019). For example, the District 
worked closely with the National Housing Trust (NHT) 
and the Housing Association of Nonprofit Developers 
(HAND) to identify critical recommendations for imple-
menting BPS in the multifamily sector (NHT and HAND 
2019). This study, alongside leveraging CoStar data to 
help identify Naturally Occurring Affordable Housing 
(NOAH) in the District, suggests the significant financial 
capacity it takes to understand local multifamily build-
ings. The District’s Green Bank provides access to capi-
tal and innovative financing solutions to prioritize an in-
clusive and affordable clean economy, and to connect the 
District’s Green Bank with affordable housing, the Af-
fordable Housing Retrofit Accelerator (AHRA) was cre-
ated. The AHRA offers technical assistance to qualifying 
affordable housing buildings to meet the energy stand-
ards set in the BEPS program. Not all jurisdictions will 
have access to comprehensive analyses nor partnering 
organizations; therefore, this paper will demonstrate the 
free analyses leveraged through SEED as a cost-effective 
way for jurisdictions to prioritize equity in the multifam-
ily building stock and estimate the cost savings potential 
of associated upgrades. The equity analyses integrated 
into SEED are designed to enable jurisdictions that lack 
the financial capacity to conduct high-level impact anal-
yses to use a free workflow which prioritizes buildings 
by national equity standards and evaluates high-level as-
sumptions about the cost savings from upgrades to their 
building stock. 

BETTER 
BETTER is an open-platform web application leverag-
ing Johnson Control’s LEAN and ASHRAE’s Inverse 
Modeling Toolkit (IMT) methodologies to generate a set 
of change point models (i.e., piecewise linear regression 
models) for each meter type in a building compared to 
the mean outdoor air temperature. BETTER provides a 
set of nominal, conservative, and aggressive targets for a 
particular set of locations and property types. For this 
analysis, multifamily buildings in the District have al-
ready been benchmarked by the BETTER team. Each 
change point model is compared to the benchmark value, 
and the savings (if any) are cataloged for the user. 
BETTER also provides a range of high-level, low-to-no-
cost energy conservation measures (ECMs) that a build-
ing can potentially undergo to reach the benchmarked 
value. These results are a powerful method to provide 
high-level screening results for a portfolio of buildings 
on which properties to prioritize. A user can quickly sort 
the results and prioritize buildings with the highest en-
ergy or cost savings or those with the most aggressive 
GHG reductions.  

Methodology 
The overarching goal of this analysis is to assess whether 
(and to what extent) the weighing of an equity metric in-
fluences the types of buildings that would be selected for 
“Green Bank” style investments. The result must be eas-
ily translated into action by a SEED or SEED-based user. 
This requires an easily understandable and defensible 
workflow with readily available user interfaces.  
The methodology is divided into six major portions, in-
cluding 1) data ingestion and preprocessing using the 
SEED Platform, 2) addition of EEEJ metrics to SEED, 
3) running BETTER, 4) development of portfolio prior-
itization to select buildings, 5) comparison of buildings 
selected with and without EEEJ metrics, and 6) demon-
stration of how the prioritized metric can be used in 
SEED. Figure 2 shows a high-level workflow diagram of 
the process. 

 
Figure 2 Workflow diagram of the methodology (the 

highlighted steps are described in the text) 

SEED Platform Data Ingestion and Analysis 
The SEED Platform was used as a data repository and 
connector for the buildings evaluated in this analysis. 
The selected dataset was from the District and included 
its public disclosure data (Department of Energy and 
Environment 2018) and data on multifamily affordable 
housing provided directly by the District. The District’s 
BPS policy uses Building Energy Analysis Manager 
(BEAM), a SEED-based application, to manage its 
buildings (ClearlyEnergy 2023). BEAM directly extends 
SEED’s code base, and extensions added to SEED end 
up directly in BEAM. The data import process includes 
the following: 
1. Download public disclosure data (Department of 

Energy and Environment 2018). 



   
 

2. Digest the CSV file into separate files that can be 
uploaded to SEED. This included breaking down the 
building properties for each year and creating JSON 
blocks of meter data. 

3. Deploy an instance of SEED in the cloud to enable 
multiuser access for the analysis. 

4. Use SEED’s API and PySEED (Long et al. 2023) to 
upload, match, and merge the District’s property 
data.  

5. Run SEED’s data quality checks to flag buildings 
with poor data, e.g., no floor area, building types, 
and more than zero meters. 

6. Create SEED filter groups to display only 
multifamily buildings. 

7. Add other required information, such as ASHRAE 
climate zone and eGrid Subregion, by uploading the 
file and mapping it correctly. 

This SEED instance was used as the main database for 
the analysis. Figure 3 represents multifamily building 
characteristics for buildings under BPS for 2022. Most 
multifamily buildings are less than 250,000 square feet. 
There is a bimodal distribution in terms of when the 
buildings were built, with two major development peri-
ods between 1925 and 1975 and another in 2000 to the 
present. Most buildings have two meters (electricity and 
natural gas), but only a few have only electricity, and 
some have either diesel, fuel oil, or district energy. Only 
the buildings with electricity and natural gas were eval-
uated in this analysis. 

EEEJ Integration 
In an effort to make actionable and informed decisions, 
a streamlined process was used to efficiently process 
data related to Community Environmental Justice and 
Sustainability Trends (CEJST). This included extracting 
consensus metrics, identifying communities by priority, 
and visualizing impactful data.  

 
Figure 3 Multifamily Building Characteristics in the 

District (for buildings required under BPS ordinance) 

An EEEJ analysis feature was added to the SEED Plat-
form. This analysis can be applied to buildings to retrieve 
disadvantaged community classification status and other 
data related to EEEJ. It uses data from several different 
sources: 
1. Disadvantaged community classification and energy 

burden information from the CEJST dataset (Council 
on Environmental Quality (CEQ) 2022). 

2. US Department of Housing and Urban Development 
(HUD) assisted multifamily buildings and public 
housing developments (US Department of Housing 
and Urban Development (HUD) 2023a; 2023b). 

3. The Environmental Protection Agency’s (EPA) En-
vironmental Justice screening and mapping tool 
(EJScreen) report (US Environmental Protection 
Agency (EPA) 2023b) includes environmental jus-
tice indices as well as demographic, environmental, 
and socioeconomic indicators. To learn more about 
the EJScreen data, visit the EPA’s EJScreen website 
(US Environmental Protection Agency (EPA) 
2023a). 

Providing the building address or latitude and longitude 
is a requirement for performing the analysis. Outputs in-
clude disadvantaged community classification and en-
ergy burden status that can be used to prioritize buildings 
for energy efficient upgrades. 
The first step in conducting the analysis is to select one 
or more buildings from the SEED inventory page and se-
lect Run Analysis from the Actions dropdown menu. The 
analysis first retrieves a census tract geoid and latitude 



   
 

and longitude data for each building using the census ge-
ocoder service (United States Census Bureau 2023). Us-
ing the census tract information, a match is made with 
the CEJST and HUD datasets to retrieve the following 
information: 
• DAC classification of the census tract  
• whether the census tract is classified as low-income 
• whether the census tract is energy-burdened 
• the energy-burdened percentile of the census tract 
• the share of neighboring disadvantaged tracts 
• the number of affordable housing locations (multi-

family assisted and public housing developments) in 
the census tract 

Additionally, a link to view the EJScreen report for a 1-
mile radius around the building is provided.  
The retrieved information is stored in the analysis sec-
tion, and the DAC classification and other fields are 
stored in each building record in the SEED Platform so 
that they can be used for filtering, labeling, and prioriti-
zation activities. 

BETTER Analysis and ECM Cost Methodology 
BETTER was configured with a nominal savings target 
to calculate nominal (median) potential energy savings 
and a minimum R2 of the change points set to the soft-
ware’s recommended value of 0.6 to provide a reasona-
ble number of models to be generated. The energy sav-
ings calculation is based on BETTER’s benchmarked 
nominal change point model based on building type and 
climate zone. There are several evaluation factors, in-
cluding the cooling parameter slope, the cooling balance 
setpoint, the base load reduction, the heating balance set-
point, and the heating parameter slope. 
Through the LEAN project (Donnelly, Kummer, and 
Drees 2013), heuristics were created to provide high-
level ECMs. BETTER provides a list of recommended 
measures for each building. The measures are high-level 
recommendations that can be determined by comparing 
two change point models (the actual building and the 
benchmarked building). 
Kontokosta et al. and Lai, et al. (Kontokosta, Spiegel-
Feld, and Papadopoulos 2020; Lai et al. 2022) evaluated 
over 3,600 audit reports from New York City’s Local 
Law (LL) 84 (benchmarking) and LL87 (auditing) (City 
of New York 2009; 2012). Each audit was cross-refer-
enced with permit data to determine which ECMs were 
implemented. Thus, the analysis determined the cost of 
implementation for multifamily and office buildings 
ECMs. The cost per ECM values were presented by 
building floor area with mean, median, and standard de-
viation. This data should be used cautiously as it only 
applies to offices and multifamily buildings in New York 

City and should be evaluated before use in other juris-
dictions. 
For this analysis, the mean cost was selected to represent 
the cost of implementing the measures recommended by 
BETTER. However, the measures between the LL87’s 
data and BETTER data were not a direct mapping. In ad-
dition, the mappings were not mutually exclusive, and if 
a BETTER ECM is mapped to more than one LL87 
ECM, then the costs incurred were assumed to have been 
incurred more than once. Table 1 shows the final costs 
of the ECMs after mapping to BETTER’s recommended 
measure. 

Table 1 Cost of ECMs based on BETTER ECM names 

BETTER is configured to run directly within SEED. 
This provides a simple interface for running multiple 
buildings and automatically transferring the results into 
SEED’s column-based structure. The data are sent to 
BETTER using BuildingSync (Long et al. 2021) with 
data auto-mapped from the SEED columns for the build-
ing characteristics (property type, location, gross floor 
area) and the monthly meter data for each meter type 
(typically electricity and natural gas). 
Each BETTER result was post-processed to calculate the 
total cost of ECM implementation (Equation 1) based on 
the mappings and implementation costs provided by the 
prior analysis of the LL87 audit results.  

 
C!"#$ = A$𝐶%

&

%'(

 (1) 

where Cimpl is the implementation cost of all measures 
for the building, k is each ECM, n is the total number of 
ECMs, Ck is the implementation cost of the ECM per 
building floor area, A. The other variables of direct inter-
est from BETTER that persisted in the SEED’s building 
record were: 

ECM Mean 
($/ft2) 

Median 
($/ft2) 

Add/Fix Economizers 0.26 0.25 
Add Wall/Ceiling/Roof Insulation 0.80 0.36 
Decrease Heating Setpoints 0.26 0.25 
Decrease Infiltration 0.80 0.36 
Increase Cooling Setpoints 0.26 0.25 
Increase Cooling System Efficiency 0.40 0.15 
Increase Heating System Efficiency 0.39 0.10 
Reduce Equipment Schedules 0.15 0.08 
Reduce Lighting Load 0.05 0.03 
Reduce Plug Loads 0.15 0.08 
Upgrade Windows to Improve 
Thermal Efficiency 0.80 0.36 

Upgrade Windows to Reduce Solar 
Heat Gain 0.80 0.36 



   
 

• Potential Cost Savings (USD$/year) 
• Potential Energy Savings (kWh/year) 
• Potential GHG Emissions Savings (MtCO2e/year) 
• BETTER Measure Recommendations 

Portfolio Prioritization Methodology 
The overall result of this analysis is a prioritized list of 
buildings that should undergo upgrades based on an in-
vestment threshold. The variables selected for prioritiza-
tion must be readily available and translated into a col-
umn-based sorting system similar to Microsoft Excel’s 
column-based sorting.  
In this work, the main goal of portfolio prioritization is 
to maximize potential energy cost savings for the build-
ing owner. However, competing objectives lead to a 
multi-objective prioritization with tradeoffs that should 
be evaluated by the jurisdiction manager when consider-
ing the entire portfolio. The objective function variables 
used in this analysis include the total potential energy 
cost savings of the selected buildings, the total number 
of buildings selected for upgrade, and the percentage of 
buildings in a DAC census tract. In prioritizing the port-
folio, the following variables were used to create the 
analysis parameter space.  
• Energy Burden Percentile Weight, w1, [0 to 1] 
• Energy Cost Savings Weight, w2, [0 to 1]  
• Number of buildings selected, N, [50 to 𝓝] 
The prioritization function was a weighting of the objec-
tive functions and was then sorted in descending order. 
The sorting is not needed for calculating the analysis 
metrics but provides the jurisdiction manager with the 
list of buildings in the order they would ideally provide 
investment. Equation 2 is the objective function used to 
prioritize the portfolio. 

 𝑆) = 𝑠𝑜𝑟𝑡$ 𝑤*𝐸𝐵+,& +𝑤-𝐶+,+./0&1+,&
𝑛𝜖𝒩

 

      s.t.  𝑤* +𝑤- = 1, 
             n < 𝓝 

(2) 

where Sp is the prioritized set of buildings, EBs,i is the 
scaled energy burden percentile, and Cs,savings,i is the 
scaled energy cost savings for each building, i. 𝓝 is the 
total number of buildings in the portfolio. The scaling 
was accomplished by dividing each instance of EB and 
Csavings by EBmax and Csavings,max, respectively.  
The parameter space was sampled 10,000 times using a 
Latin Hypercube Sampling (LHS) (Macdonald 2009; 
Helton and Davis 2003) algorithm to generate equal dis-
tributions for the entire parameter space. (With a 0.01 
step in weights and including all counts of buildings, the 
whole mesh would be 8,240,000–this is straightforward 

to run; however, running with LHS provides improved 
interpretability of the results by not overcrowding the 
plots.) Each portfolio was then evaluated to identify the 
most important indicators. Note that each prioritized 
portfolio instance had a variable number of buildings se-
lected. Key indicators included: 
• Number of buildings in portfolio instance, count 
• Instance of the energy burden weight, ratio 
• Total portfolio energy cost saving, million USD$ 
• Total portfolio GHG emissions savings, mtCO2e 
• Total portfolio cost to implement ECMs 
• Total cost of savings (which was calculated and 

shown in Equation 3), USD$ per kWh saved 
• Percent of buildings in DAC, % 
• Statistics on energy burden percentile (min, median, 

mean, max, standard deviation) 

 𝐶𝑜𝑆 =	&
𝐶𝑜𝑠𝑡	𝑜𝑓	𝐸𝐶𝑀	𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛$
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝐸𝑛𝑒𝑟𝑔𝑦	𝑆𝑎𝑣𝑖𝑛𝑔𝑠$$%𝒩

	 (3) 

where CoS is the Cost of Savings, n is the specific build-
ing for the selected subset of buildings, 𝒩 (not bolded). 

Simulation Analysis 
An analysis was carried out using the District’s public 
disclosure data. The building records were imported, 
cleaned, matched, and verified. The resulting dataset in-
cluded 4,206 buildings for the reporting year 2022 (the 
most recent year for which data was reported for the Dis-
trict). Of the 4,206 unique buildings, only 3,199 were la-
beled as having a BPS target, and 1,256 were identified 
as multifamily. After filtering out common data issues 
such as missing square footage, missing location, and 
missing meter data, the resulting dataset contained 1,226 
multifamily buildings.  
Figure 4 shows the distribution of the multifamily build-
ings located in the District. Most buildings have a 
weather normalized site energy use intensity between 40 
and 80 kBtu/ft2/year. In the District, the initial BPS target 
for multifamily is based on the ENERGY STAR Score, 
which has been set at a value above 66, indicating that 
about two-thirds of the buildings are already compliant.  
The building characteristics and meter data were trans-
lated to BuildingSync and run through BETTER to de-
termine estimated energy and cost savings. They were 
then sent to an EEEJ-based tool to assess the impact of 
equity.  



   
 

 
Figure 4 Site EUI, source EUI, and ENERGY STAR 

Scores for multifamily buildings for 2022 

EEEJ Analysis 
SEED was used to perform the EEEJ analysis. The pub-
lic disclosure data provided by the District already con-
tained building addresses, but more importantly, the 
building latitude and longitude were already populated. 
Each multifamily building was selected in SEED, and 
the EEEJ background analysis was performed. Within 
the EEEJ background task, each building was updated 
with EEEJ metrics, including energy burden percentile, 
DAC flag, and several others. The EEEJ analysis was 
completed for every building. 

BETTER Analysis 
Similar to the EEEJ analysis, within SEED, buildings in 
parcels of 100 were selected and sent through SEED’s 
BETTER background analysis. The analysis took several 
hours to run for all parcels due to the computation time 
on the BETTER platform. The BETTER analysis was 
configured to use the pre-determined benchmark values 
for projected energy, cost, and GHG savings so that the 
data could be processed in batches of 100 parcels without 
changing the benchmark value. 
Of the 1,226 cleansed multifamily buildings, 824 build-
ings successfully ran through BETTER. Most failed be-
cause the R2 values for the change point models were not 
significant. This typically occurred when the energy data 
did not show a strong trend in outdoor air temperatures. 

Discussion and Results 
The resulting dataset included 1,256 multifamily build-
ings, 311 of which were identified as being located in 
DAC census tracts. Using the District-provided list of af-
fordable housing and NOAH buildings, 40% of afforda-
ble housing buildings are identified by the DAC flag. In 

comparison, only 23% of NOAH buildings are identified 
by the DAC flag. 
Detailed results from BETTER were downloaded for 
each building using PySEED. The results were post-pro-
cessed using Python and showed a wide range of change 
point model characteristics. Figure 5 shows the 3-param-
eter electricity change point models. Overlayed on all 
change point models (in gray) are the 10th, median, mean, 
and 90th percentile of the change point models. A few 
dozen buildings fall outside the 90th percentile and a few 
fall below the 10th percentile. Based on the plot, the base-
load parameter (the horizontal line) shows a skewness of 
values towards the bottom (median less than mean). The 
cooling change point temperature ranges from 52°F to 
64°F (11°C and 18°C). 

 
Figure 5 All 3P change point models for electricity 

There were 188 buildings with a 5-parameter electricity 
change point model. Figure 6 shows a similar plot to Fig-
ure 5, where all change point models (gray) are plotted 
underneath the select metrics. As it is impossible to know 
the exact reason for a non-linear cold temperature de-
pendency on electricity, it is assumed that these build-
ings would include electric heating or reheat. The better-
performing electric heat/reheat change points are around 
7°C (45°F).  



   
 

 
Figure 6. All 5P change point models for electricity 

Portfolio Prioritization 
This section describes the results of running the 10,000 
portfolio prioritization models. The analysis results were 
exported from SEED and post-processed using Python 
and Jupyter Notebooks. Figure 7 shows 10,000 data 
points, and each data point represents a group of n build-
ings with total energy savings compared to the cost of 
implementing all ECMs for the n buildings. The color 
and size indicate the percentage of the n buildings in a 
DAC census tract.  

 
Figure 7 Portfolio prioritization total energy savings 

based on implementation costs 

The figure shows that the return on energy savings de-
creases the more money is invested in ECMs. Further-
more, there is a point at which only small energy savings 
can be achieved by focusing on a high percentage of 
DAC buildings, as the number of buildings is small. At 
the top right are the largest energy savings and the high-
est investments; however, these buildings also have low 
percentage DAC investments. Fixing the cost of invest-
ment at a max of $30M shows that there is a slight energy 
savings difference between investing in a low percentage 
and a high percentage of DAC buildings. This result 
shows the potential of providing jurisdiction managers 
with additional data to invest in DAC census tracts. 
Figure 8 shows the number of buildings, n, that can be 
improved based on the percentage of DAC buildings in 
n. The y-axis shows the cost of implementing the invest-
ment compared to the total potential energy saved (for 
all n buildings). In general, the more buildings selected, 
the higher the cost per kWh saved and the lower the cost 
per kWh saved if only a few (prioritized) buildings are 
affected. The figure’s red and green X’s are the Pareto 
optimal fronts. The red X’s have no constraint on the 
number of buildings; however, the green X’s have a tar-
get number of 225 to 275 buildings. Suppose there is a 
minimum number of buildings that a jurisdiction wants 
to impact. In that case, there is a Pareto optimal front 
showing that the more DAC buildings impacted, the 
lower the cost of savings (less money invested per kWh 
saved). 

 
Figure 8 The result of each portfolio analysis given $30 
million investment based on the cost of savings per per-
cent DAC buildings selected in a portfolio. Red crosses 
indicate the Pareto front for an unconstrained number 

of buildings selected; green crosses are the Pareto front 
for 225 to 275 buildings selected. 



   
 

Conclusion 
Leveraging public disclosure data, EEEJ, and BETTER 
allows for better decision-making that can help prioritize 
investments in historically disadvantaged and underin-
vested communities. Multiple metrics were evaluated in 
this analysis, including total potential energy cost sav-
ings, the number of buildings impacted, and the percent-
age of buildings in disadvantaged communities. Alto-
gether, the number of dimensions is too large to make 
reasonable decisions; however, assuming a minimum 
number of buildings to invest in and a maximum invest-
ment amount, a jurisdiction can generate a DAC curve, 
see Figure 9. The curve shows how heavily the jurisdic-
tion should weigh the energy burden percentile metric to 
achieve an impact on the number of buildings in a DAC 
census tract. For example, to achieve the maximum num-
ber of buildings, weighting the energy burden by one will 
result in ~85% of DAC buildings, but weighting by 0.45 
results in slightly more DAC buildings. This curve 
changes depending on the available investment and is 
unique for each jurisdiction.  
There is a clear tradeoff between all of these variables. 
The findings illuminate the need for streamlined, robust 
equity-prioritization in a jurisdiction’s BPS policy for 
the beneficial outcomes to be distributed across a com-
munity, especially to those historically disinvested build-
ings and communities. Furthermore, without a clear port-
folio equity prioritization, a jurisdiction cannot ensure 
they comply with the Justice40 Initiative and realize de-
carbonization in disadvantaged communities. 

 
Figure 9 Weight of the energy burden percentile field 

and the resulting number of buildings and percent DAC 
buildings identified. 

Table  shows the results between rank sorting $30M in-
vestments in buildings based on sorting solely on poten-
tial energy cost savings versus including a weighting fac-
tor of 0.52 for the energy burden percentile. The 0.52 
weighting value was chosen based on a near-optimal 
DAC impact based on Figure 9.  

Table 2 Prioritizing DAC with $30M ECM Investment  

This analysis is only the beginning of more advanced ef-
forts that need to be conducted; however, the results 
show promise for better prioritization of Green Bank-
style investments that cities need. Distilling the metric to 
a simple weighting factor can help create a transparent 
prioritization algorithm that can be easily integrated into 
existing tools jurisdictions use to manage BPS ordi-
nances. 
Figure 10 shows a map of all the prioritized buildings in 
SEED after applying the weighting factor of 0.52 on the 
energy burden percentile and 0.48 on the potential en-
ergy cost savings. The shaded areas of the plot show cen-
sus tracts that are marked as disadvantaged. 

 
Figure 10 Looping the weighted energy burden percen-

tile back into SEED and showing the location of the 
buildings. 

Metric Units No 
Weight 

With 
Weight 

Number of Build-
ings Impacted Count 93 241 

Potential Energy 
Savings GWh 388 365 

Potential GHG Sav-
ings MtCO2e 103,200 92,200 

Potential Cost Sav-
ings 

Million 
USD$ 33.0 28.4 

ECM Implementa-
tion Cost 

Million 
USD$ 30.0 30.0 

Percent buildings in 
a DAC census tract Percent 42.0 90.5 



   
 

Lastly, there is still work to be done to refine these work-
flows, including the following: 
• Streamline the running of change point models for 

property types that are not already benchmarked. 
• Investigate the use of other indicators, such as “share 

of neighboring tracts that are DAC,” to identify nat-
urally occurring affordable housing or equity-prior-
ity buildings that are not within the White House 
Census tracts. 
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